Application of Self-Organized Neuro-Fuzzy Identifier in Intelligent Predictive Control of a Power Plant

نویسندگان

  • Hamid Ghezelayagh
  • Kwang Y. Lee
چکیده

H. Ghezelayagh and K. Y. Lee are with the Department of Electrical Engineering, The Pennsylvania State University, University Park, PA16802, USA (e-mail: [email protected]). Abstract In an intelligent predictive controller, a neuro-fuzzy identifier predicts the response of the plant in future time interval, and provides a non-model based control approach. This identifier generates fuzzy rules and tunes membership functions automatically. A Genetic Algorithm (GA) method is implemented to encode and alter the fuzzy rules to minimize the identifier response error to the plant’s logged data. Furthermore, the membership functions are tuned by error back-propagation method. These training methods dedicate self-organization to the neuro-fuzzy identifier. The identifier is used to model a power plant in predictive control approach. The experiments are conducted to achieve a reliable training data set.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of Neuro-fuzzy Identifier in the Predictive Control of a Power Plant

An adaptive predictive control methodology is applied for a fossil fuel boiler control. The control algorithm takes advantage of a neuro-fuzzy identifier system for prediction of the boiler response in a future time window. An optimizer algorithm based on evolutionary programming technique (EP) uses the identifier-predicted outputs and determines input sequence in a time window. The present opt...

متن کامل

A New Recurrent Fuzzy Neural Network Controller Design for Speed and Exhaust Temperature of a Gas Turbine Power Plant

In this paper, a recurrent fuzzy-neural network (RFNN) controller with neural network identifier in direct control model is designed to control the speed and exhaust temperature of the gas turbine in a combined cycle power plant. Since the turbine operation in combined cycle unit is considered, speed and exhaust temperature of the gas turbine should be simultaneously controlled by fuel command ...

متن کامل

Performance Evaluation of Hybrid Intelligent Controllers in Load Frequency Control of Multi Area Interconnected Power Systems

This paper deals with the application of artificial neural network (ANN) and fuzzy based Adaptive Neuro Fuzzy Inference System(ANFIS) approach to Load Frequency Control (LFC) of multi unequal area hydro-thermal interconnected power system. The proposed ANFIS controller combines the advantages of fuzzy controller as well as quick response and adaptability nature of ANN. Area-1 and area-2 consist...

متن کامل

Turbine Dynamics Study Control Using Adaptive Neuro-fuzzy Inference System (anfis)

This paper presents an application of Adaptive Neuro-Fuzzy Inference System (ANFIS). The control structure of the purposed consists fuzzy logic to damp the low frequency oscillations of power system and neuro identifier to track the dynamic behavior of the plant. In practical for damping of disturbance in the power system, Automatic Voltage Controller (AVR) is used. To develop this controller a...

متن کامل

Sensor Fusion and Complex Data Analysis for Predictive Maintenance

An essential step toward the development of an intelligent substation is to provide self-diagnosing capability at the equipment level. Transformers, circuit breakers and other substation equipment should be enabled to detect their potential failures and make life expectancy prediction without human interference. This paper focuses on the development of an on-line equipment diagnostics using art...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010